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Motivation

39.6 percent of men and women in the US will be
diagnosed with cancer at some point during their lifetimes
One in eight women in the US will be diagnosed with
breast cancer
Early detection is essential in treatment
Computer Automated Detection and Diagnosis is currently
used as "second reader" to the radiologist to make sure no
detection is missed
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Our Goals

Detect abnormal regions in a mammogram
Classify those regions as malignant or benign
Understand and implement tumor development models that
account for competing cell populations and chemotherapy
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Detection System Goal

The goal of our group was to research and further develop
algorithms to identify the presence of a mass in a
mammogram
Can we identify the same masses that radiologist do? Can
we do better?
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The Data Used

Public data base from the Cancer Imaging Archive called
the Curated Breast Imaging Subset of DDSM
(CBIS-DDSM)
For each patient we had full mammogram and mass mask
images as well information on the type of mass identified
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One Case

Figure: Patient 100, Benign Mass
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Challenges and Solutions

Mass characteristics (shape, size, density) differ for each
patient
The tissue in the background has similar characteristics to
masses
Mammogram images are from 1990s and not digital so
they have poor contrast/quality
In order to improve image quality and identify masses we
will use a three step process:

1 Apply a linear transformation enhancement filter
2 Segment mass regions
3 Use adaptive thresholding for mass identification
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Image Enhancement Filter

EIij =


a log(1+ bOIij OIij < α

exp

(
OIij
a
− 1
)

b
OIij > α

OI = original image
EI = enhanced image
m is the maximum value of the gray level in the image
a and α are parameters to be chosen empirically

b =
1− exp

(m
a

)
m
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Why does it work?
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Result

(a) Orginal mammogram (b) Enhanced mammogram
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Segmentation of Mass Regions

Segment the regions of interest by:

SI = OI + EI

Figure: The full (left), enhanced (middle), and segmented (right)
mammograms.
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Near the Mass

Figure: Original (left), enhanced (middle), and segmented (right)
mammograms
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Adaptive Local Thresholding

Create an adaptive threshold

THij = Mij + γSIdiff ij ,

SIdiff ij = SImax ij − SIminij from large window
Mij= mean intensity in small window
γ to be set empirically between 0 and 1

If SIij ≥ THij and SIij ≥ Mij , then the pixel is suspicious
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Why adaptive?

Figure: The resulting mask when we threshold every pixel with the
same threshold
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Results

Figure: Original mammogram (left), the mask given by the data set
(center), and the mask found by adaptive thresholding (right)
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Classification

Goal: Classify possible masses as benign or malignant
1 Use hand crafted features to classify
2 Use deep neural networks to learn features to classify

Let x be a feature obtained from the mammogram and
y ∈ {−1, 1} be the label -1 if the mass is benign and 1 if
the mass is malignant.
A classifier is a function f that takes in x and outputs y
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Histogram of Oriented Gradients

Let I be the image
At each pixel compute:

1 Gradients: Ix and Iy

2 Orientation: θ = tan−1(
Iy
Ix
)

3 Magnitude:
√
I 2x + I 2y

Partition image into blocks
For each block take weighted histogram of orientations
weighted by the gradient magnitude
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HOG Features

Figure: A visualization of the HOG features
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Classifiers

Logistic Regression:

y∗ = argmax
y

P(y |w,b, x) = (1+ ewT x+b)−1

Support Vector Machines:

y∗ = sign(wT x + b)

y∗: label found by classifier
w : weight vector
b bias:

Figure: SVM maximized the margin and finds the optimal seperating
hyperplane between classes 1.

1Bishop,Christopher, "Pattern Recognition and Machine Learning"
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Some Classification Results

Figure: Classification accuracy for using the HOG features. The best
performing HOG parameters were a block size of 32 and 11 angle
bins (LR), block size of 32 and 14 angle bins(LR with PCA
pre-processing), and block size of 32 and 15 angle bins (SVM).
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Neural Nets

The goal of our classification is to fit an approximation f to the
true classifier function

f ∗ :M→ {−1, 1}

WhereM⊂ [0, 1]w×h is the space of mammogram images, and
the labels {−1, 1} represent the diagnosis
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Build this classifier from small parts
The approximator f (x) is the composition of multiple
functions referred to as layers
Each individual layer consists of simple functions known as
units2

2Also called neurons.
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Units

Each unit g : Rm → R is parametrized by a weight vector w
and a scalar bias b Typically:

g(x ;w , b) = h
(
wT x + b

)

h is a fixed nonlinear function called an activation
Usually h(z) = max{0, z} or h(z) = 1/(1+ e−z)

w and b are fit to the training data
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Layers

A Layer f (i) is then a vector of a number of units stacked
together

f (i)(x) =
[
g
(i)
1 (x), g (i)

2 (x), ..., g (i)
d (x)

]T
Finally, we combine these layers via nested composition. If x
comes from the set of input images, we have

f (i)(x) = f (i)(f (i−1)(...(f (1)(x))))

This is our Network
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Network

Recall that our goal is to find an f that approximates the true
classifier

f ∗ :M→ {−1, 1}

Normalize the output of the final layer to give a probability
distribution
f is the function that returns −1 or 1 based on which class
has higher probability
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Graphical Representation
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Training/Fitting

Now we have the functional form of the function f used for
prediction, but how do we find a good set of parameters?

Supervised learning: Give the network pairs (x , y), where
y ∈ {−1, 1} is the diagnosis
compute a Loss function to quantify the “badness” of fit
Similar to likelihood maximization used in linear regression,
etc.
Minimize loss using gradient descent and
Backpropagation to fit weights and biases to the data
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Convolutional Neural Networks

As is common practice with image data, we actually used
Convolutional neural networks
The functional form differs subtly in these networks, using
a (discrete) convolution instead of an inner product in the
unit functions
We now retain the 2D structure of each x , and then the
convolution maps it to another 2D grid of units, with
entries:

gmn(x ;w , b) = h

(
(w ∗ x)mn + b

)
(w ∗ x)mn =

∑
k,l

wm+k,n+l · xkl
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Convolutional Neural Networks
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Transfer Learning

Neural networks with numerous layers are referred to as
“deep”
One of the crippling drawbacks of such networks is the
sheer volume of training data they need
Results that make headlines with their near perfect
accuracy can use upwards of a million training images
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Transfer Learning

We had ≈ 1200 mammography images
In many applications gathering more data may not be
feasible nor ethical (e.g medical data)
We can take advantage of networks pretrained on tasks
where data is abundant
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Transfer Learning

3

3From Zeiler and Fergus
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Transfer Learning

3

3From Zeiler and Fergus
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Transfer Learning
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Data Augmentation

Artificially generates new data
Addresses lack of data by increasing effective sample size
Guards against overfitting to the training set
Our augmentation included:

reflecting images horizontally
reflecting vertically
small-scale zooms
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Architectures

Baseline convolutional network:

Trained only on our data
3 convolutional layers plus 2 fully connected layers
Used as proof of concept
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Architectures

VGG 16:
16 layers deep
Performed exceptionally well for its simplicity in the 2014
ImageNet competition
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Architectures

GoogLeNet (Inception):
22 layers deep
Introduced inception module
Won ImageNet competition in 2014
We used inception V3
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Training/Results

All neural networks implemented in Keras with a
Tensorflow backend
All GPU intensive computations run on Amazon Web
Services (Many thanks to Prof. Hajir and the department)

p2.xlarge GPU instances
Training time: 1-2 days
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Baseline
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VGG 16
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Inception V3
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Final Results

After 180 epochs:
Baseline: 65%
VGG-16: 72%
GoogLeNet (Inception V3): 78%
Best in literature: 92%

Applied Mathematics Masters Program Breast Cancer Diagnosis and Treatment 37 / 53



Breast
Cancer

Diagnosis
and

Treatment

Applied
Mathematics

Masters
Program

Introduction

Anomaly
Detection

Classification
Classical ML
Neural
Networks

Tumor
Growth and
Treatment

Conclusions
Bibliography

Modeling Cell Populations

Want to understand how tumors grow
Over the years scientists and mathematicians have
attempted to model tumor growth
Our model describes the interaction between the host,
effector, and tumor cells
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Competing Cells

Figure: How Cells interact
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System of ODE’s

Ṫ = r1T (1− T

K1
)− a12HT − D(E ,T )T

Ḣ = r2H(1− H

K2
)− a21HT

Ė = σ − d3E + g
D2(E ,T )T 2

h + D2(E ,T )T 2E − a31TE

D(E ,T ) = d
Eλ

sTλ + Eλ

T - tumor cells, H - host cells, E - effector cells
a - competition terms
r - individual growth constants
K - carrying capacity
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Nondimensionalized Equations

ẋ = x(1− x)− a12yx − D(x , z)x

ẏ = r2y(1− y)− a21xy

ż = 1− d3z + g
D2(x , z)x2

h + D2(x , z)x2 z − a31xz

D(x , z) = d
f λzλ

sxλ + f λzλ

x - tumor cells
y - host cells
z - effector cells
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Stable Fixed Points

Figure: Graph of nullclines and stable fixed points

Obtain fixed points by setting ẋ = ẏ = ż = 0
x∗1 = (0, 1, 8.93)
x∗2 = (0.65, 0, 0.31)
x∗3 = (0.06, 0, 6.55)
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Cell Growth

Figure: A function of each cell population over time
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Experimental Data

Need to test the model with other data
Hiramoto and Ghanta (1974)

36-Day Experiment
Day 0: Injected mice with tumor cells
Day 10: Cell populations start to change
Record cell populations at Days 10,18,21
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Process

Given the data, fit coefficients to approximate the data
Some coefficients found experimentally
Use Least Squares to find the others
We fit d, s, and g
Solve for x, y, z using RK4

ẋ = x(1− x)− a12yx − D(x , z)x

ẏ = r2y(1− y)− a21xy

ż = 1− d3z + g
D2(x , z)x2

h + D2(x , z)x2 z − a31xz

D(x , z) = d
f λzλ

sxλ + f λzλ
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Fit of the Data

Figure: A function of tumor and healthy cells over time, for Days 10,
18, and 21

Applied Mathematics Masters Program Breast Cancer Diagnosis and Treatment 46 / 53



Breast
Cancer

Diagnosis
and

Treatment

Applied
Mathematics

Masters
Program

Introduction

Anomaly
Detection

Classification
Classical ML
Neural
Networks

Tumor
Growth and
Treatment

Conclusions
Bibliography

Fit of the Data [cont’d]

Figure: Residuals of our estimated parameters
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Chemotherapy

After Day 21, inject mice with chemotherapy drug
Record populations at Days 24, 27, 30, 33, 36

Implications for the Model
Chemotherapy targets cancer AND healthy cells
However, Hiramoto and Ghanta recorded tumor cell data
So for simplicity, only note the effects of chemotherapy on
tumor cells
Body takes some time to realize what the drug is

ẋ = x(1− x)− a12yx − D(x , z)x − (1− e−pu(t−τ)+)x
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After Chemotherapy

Figure: Effects of chemotherapy on tumor population.
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Future Work

Mass Detection and Classification
1 Using newer digital images should improve performance.
2 Need images from a patient over time to better mimic the

true detection process
3 Explore different neural network architectures
4 Report metrics like precision and recall
5 Increase interpretability using new techniques

Tumor Growth and Treatment
1 Repeat procedure with a newer data set
2 Observe tumor cells in breast tissue instead of mice
3 Analyze effects of chemotherapy on healthy cells
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Thank You!

Thank you to Professor Whitaker, Dr.
Joseph Polino, Professor Hajir, and everybody in the department.
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Questions?

We will now take questions
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