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quality and more. Our image detection system consists of 
three distinct steps. First, we modify the local contrast of each 
pixel with a linear enhancement filter. Next, we subtract this 
enhanced image from the original and obtain an image with 
segmented masses. The third step binarizes the segmented 
image using a technique called adaptive local thresholding.

In order to enhance our original image, a transformation of 
pixel values is used which can be described in the following 
way:

Given a constant α, pixels in the original image OI (i,j) are 
transformed as follows to give pixels in the enhanced image 
E(i, j):

IfOI(i,j)<α,E(i,j)=alog[1+bOI(i,j)] 

IfOI(i,j)>α,E(i,j)=1[exp[OI(i,j)]−1]

where α and a are chosen empirically, b = (1−exp(m/a))  , 
and m is the maximum grey level. The log function enhances 
the lower grey level (darker areas), and the inverse function 
enhances the higher grey levels (brighter areas).

 
Figure 1: Original (left), enhanced (middle), and segmented (right) 
mammograms (GFP) 

1 Introduction

This year’s Applied Math Master’s Project investigated the 
detection, classification and growth of breast cancer tumors. 
The project was a collaborative effort by students Connor 
Amorin, Gabriel P. Andrade, Sandra Castro-Pearson, 
Abdel Kader Geraldo, Brandon Iles, Dean Katsaros, 
Terry Mullen, Sam Nguyen, Oliver Spiro, and Melissa 
Sych under the guidance of Professor Nathaniel Whitaker.

According to statistics from the CDC, breast cancer is 
the most common cancer diagnosis among women in the 
United States. Currently, radiology is an expert-based field 
where automated tools are at best relegated to the role of 
“second reader.” Early detection is an enormously important 
part of breast cancer treatment, so our goal in this project 
is to create a machine learning pipeline for detection and 
diagnosis from mammogram images. We also model the 
growth and treatment of tumors using a system of ODEs. 
Due to a lack of human data, this last part of the pipeline 
uses data from experiments on lab mice, and is not restricted 
to breast cancer.

2 Image Dataset

The Curated Breast Imaging Subset of DDSM is an updated 
and standardized version of the Digital Database for 
Screening Mammography (DDSM). The database consists 
of 2,620 scanned film mammography studies. In addition to 
the mammography images, it contains the verified pathology 
information associated with each study. The images have 
been compressed and converted to DICOM format. 
The DDSM is one of few well-curated data sets available 
for research and Computer-Aided Diagnostics (CAD). 
Although useful, the set has problems concerning data 
size and noise, as the images are digitized from film. Our 
work follows a two-fold procedure. First, we implement a 
three-step image processing method for detecting abnormal 
masses in mammograms. Once we detect an abnormality, 
we seek to classify the mass as malignant or benign using 
classical machine learning techniques along with the 
histogram of oriented gradient feature extraction method 
and also using deep neural networks.

3 Detection

Tumors can be recognized as locally low density areas on 
mammograms, but they may vary in size, shape, image 
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Figure 2: Original mammogram (left), the mask given by the data 
set (center), and the mask found by adaptive thresholding (right)
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feature space was limiting our models, and for that reason 
we looked to neural networks.

To understand the neural network approach to the image 
classification task, we first need to pose the problem in a 
well defined manner.

Let M 0 [0,1]w×h be the space of mammogram images 
that are at most w pixels wide and h pixels high and let the 
labels {−1,1} represent a benign or malignant diagnosis 
respectively. Suppose there exists an optimal classification 
function f * :  M → {−1,1}. Then a neural network ultimately 
tries to fit an approximation function f to this true classifier 
function f *. To this end, neural networks build f from the 
ground up by composing functions known as layers which 
in turn are formed from simple atomic functions known as 
units1. The units g : Rm → R  are functions parametrized by 
a weight vector w and a scalar bias b. If h is a fixed nonlinear 
function2 called an activation. Then
                         g(x; w, b) := h (wT x + b)

A layer is then an aggregation of units into a column vector. 
If d is the dimension of this vector (called the width of the 
layer), then
                            f (i) :=(g1(i),...,gd

(i))T

and the network is formed from the composition of these 
layers, with
               f (i) (f (i−1)) = [g1(i)(f (i−1)), . . . , gd

(i)(f (i−1))]T 

Therefore if our network has n layers

                       . . ( f ( 1 ) ( x ) ) ) ) 
where x e M. . Once the data has been fed through all of 
these functions, we normalize the final layer and output 
{−1, 1} based on which class has higher probability. These 
networks are often represented graphically as in Figure 3. 
The above discussion gives the neural network prediction 
function, and it remains to describe the fitting process. We 
do this via a process known as “supervised learning” where 
initially we feed the network data x  e M that is labeled 
with its true class y  e {−1,1}. After the network has been 
given some of this labeled data we compute a loss function3 
to quantify how poor the network’s predictions are on this 
data. We then use gradient descent to fit weights and biases 
to the data so that this loss is minimized.

Segmentation of mass regions from normal tissue is 
achieved by subtracting the enhanced image EI from the 
original image OI. The segmented image, SI is the result.  
 
Masses are generally more dense than the surrounding tissue, 
resulting in a bright spot on the segmented image. The image 
is binarized using adaptive local thresholding. For each pixel 
in the segmented image SI(i,j), the following criteria is used 
to classify the pixel as a potential mass pixel or normal pixel 
by the following rule:
                  If SI(i,j) ≥ TH(i,j) and SIdif ≥ MvoisiP

then SI(i,j) belongs to a suspicious area, else it belongs to 
normal tissue. TH(i, j) is the threshold value calculated by:
         TH(i,j)=MvoisiP +γSIdif f 

                  Where SIdi f =SImax(i,j)−SImin(i,j)

MvoisiP is the average pixel intensity in a small area around 
the pixel SI(i,j), SImax and SImin are maximum and minimum 
intensity value in a large window drawn around the area, 
and γ is a thresholding coefficient that is chosen empirically.

4 Classification

Once an abnormality is detected, our aim is to classify it as 
either malignant or benign. To achieve this goal, we look 
to two classical machine learning techniques. Here, we use 
support vector machines and logistic regression with and 
without principle component analysis (PCA). These models 
were trained on HOG features as described in Ergin and 
Kilinc’s A New Feature Extraction Framework Based on 
Wavelets for Breast Cancer Diagnosis.

A support vector machine (SVM) aims to find the hyperplane 
which maximizes the distance between the hyperplane and 
the nearest sample. Effectively, it separates the two classes, and 
creates the largest possible margin between the edge cases. 
Logistic regression is a special case of regression with a binary 
response variable. In logistic regression, the probability or 
odds of the response taking a particular value is modeled 
based on the combination of values taken by the predictors. 

SVM achieved a 10-fold cross-validation accuracy of 63% 
for classifying mammogram images as having a benign or 
malignant tumor. Logistic regression performed poorly, 
obtaining 54% accuracy. Logistic regression with principle 
component analysis (PCA) performed the best, with an 
accuracy of 69%. These accuracies are not satisfactory, 
especially for medical purposes. We determined that our 

where ,

1Also known as neurons. 
2Usually a rectified linear or sigmoid function. 
3This is similar to likelihood maximization used in linear regression, etc.
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The fully-connected network described above is not the 
architecture used for state-of-the-art image classification. 
Instead, we used a type of network known as a convolutional 
neural network (CNN). The functional form differs subtly in 
CNNs when compared to fully connected networks, but is 
considerably less intuitive. This is because the inner product 
in each atomic unit function is replaced by a (discrete) 
convolution, so

.......................gmn(x;w,b)=h ((w *x)mn +b ).................. 
             (w * x)mn = � wm+k,n+ l · xkl 
k,l

This allows us to retain the 2D structure of each input image. 
The convolution maps the image to another 2D grid of units 
(the next layer) as depicted in Figure 4. Convolution is often 
successful in tasks involving images for numerous reasons 
such as lowering the number of parameters (which facilitates 
training), decreasing the representational burden on each 
unit, taking advantage of the local invariance properties 
found in most image classification tasks, etc.

Just using a neural network, even a CNN, was not enough 
for our task. Perhaps one of the biggest drawbacks of neural 
networks is the sheer volume of data they need to perform 
acceptably. For this reason researchers have focused much 
effort into leveraging parameters learned from other 
classifications tasks with massive amounts of data (e.g 
classifying images of cats and dogs). This use of pretrained 
networks is referred to as transfer learning. Essentially, we 
take a network with already-fit parameters, and then fit some 
subset of those to our own data.

We used transfer learning on every network we trained for 
this task, except for a simple baseline CNN that we trained 
from top to bottom as a point of comparison.

Another method we implemented to help cope with the 
deficiency of data is known as data augmentation. This is 
the naive, but effective, idea that we can take advantage of 
symmetries we may see in our data to gain a two pronged 
advantage: we effectively increase the sample size and we 
guard against over fitting. Essentially, data augmentation is 
the creation of data by taking data we have and transforming 
it in ways that might have appeared if we gather a new data 
sample. For example, in our domain of mass classification, 
reflecting a mammogram horizontally is reasonably 
something we may have seen “in the wild” and so we might 
use both the reflection and the original to train the network. 
We augmented with horizontal and vertical flips, as well as 
small-scale image zooms.
 
With all of this said, we have the machinery necessary 
to present our models and results. The first model we 
implemented and trained on was a simple three-layer 
convolutional network with two fully-connected layers at 
the end for classification. We trained this model only on our 
data as a point of comparison for all of the techniques and 
massive networks we implemented afterwards. After feeding 
this baseline the training data 180 times, it achieved ≈ 65% 
validation accuracy.

 
Next we used the VGG16 network. This architecture was 
developed by the Visual Geometry Group at Oxford and 
performed exceptionally well, given its simplicity, in the 
famous ImageNet 2014 competition, where it was trained 
on millions of images curated from the internet. As its name 
implies, the network consists of 16 layers. After 180 passes 
of the training data it achieved ≈ 72% validation accuracy.

Finally we used the third version of GoogLeNet. The first 
iteration of this network won multiple categories of the 
ImageNet 2014 competition (the same year as VGG16). 

Figure 3: Fully connected network

Figure 4: Two layers of a CNN
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It became (in)famous for its clever “inception” modules 
which act like layers but are each more complicated than 
our baseline model. This performed with ≈ 78% accuracy 
after being fed the training data 180 times.

5 Modeling Tumor Growth and Treatment

For this portion of the project we replicated a 2014 paper 
written by López, Seoane and Sanjuán, called A Validated 
Mathematical Model of Tumor Growth Including Tumor-
Host Interaction, Cell-Mediated Immune Response and 
Chemotherapy. There, the authors consider ODEs from 
the literature that model interactions among three cell 
populations: tumor, immune, and host cells. In particular, 
they non-dimensionalize these equations and focus on 
tumor-host and tumor-effector interactions since host and 
immune cell competition is negligible. The paper concludes 
by incorporating chemotherapy into the model and evaluates 
the effects on the ODEs using mouse data from Hiramoto 
and Ghanta (1974).

To understand this system, some intuition of the underlying 
physical processes is necessary; we begin with the tumor-
host interactions. When tumor cells form, they interact 
with healthy host cell populations and compete for oxygen 
in the blood stream. Tumor cells multiply at a faster rate, 
overwhelming and eventually killing the host’s cells. The
body recognizes the problem and sends two types of cells 
to fight off the cancerous ones — natural killers and CD8+ 
T-lymphocytes — but for small time intervals the two 
populations can be expressed as a linear combination of one 
another, and so we refer to them communally as effector cells. 
Effector cells directly attack the tumor cells and reduce their 
population. This introduces our second point of comparison: 
tumor-effector interactions.

Due to discrepancies in units of measure, we non- 
dimensionalized the ODE. The equations representing the 
growth rates of the tumor (x), host cells ( y), and effector 
cells ( z) then become

e =x(1−x)−a12yx−D(x,z)x y = r2y(1 − y) − a21xy

D2(x, z)x2

 
where D(x,z) = dsxλ+fλzλ .

It is also worth noting that, in the original ODEs, the host 
and tumor cells are assumed to follow a logistic growth.

Now that we had the ODEs in a form we could work with, 
we began by trying to understand the qualitative behavior of 
the system. We plotted nullclines and found the fixed points 
of this system of equations using given parameter values. 
We had three saddle points at (0.06, 0, 6.55), (0.1, 0.74, 
3.02) and (0, 0, 8.93), and two stable fixed points at (0.65, 
0, 0.31) and (0, 1, 8.39). The saddle points are physically 
uninteresting, but note that the two stable points correspond 
to total death of the host population and total death of the 
tumor cell population respectively. After plotting this using 
the same data as the authors, we could see that all of this 
matched their results.

With this information gained, our next goal was to evaluate 
it against experimental results and then incorporate 
chemotherapy into the model. We used data from Hiramoto 
and Ghanta (1974) that resulted from experiments where 
they injected mice with tumor cells and recorded the 
populations of host, effector, and tumor cells over a period 
of 36 days. Unfortunately the experimenters could not 
differentiate between host and effector cells when recording 
the data points, so these cell counts are combined and 
reported as “healthy” cells. Furthermore, the body needed 10 
days before it noticed the tumor cells and began mounting 
a resistance, while the tumor cells needed about 15 days to 
begin growing consistently, so the populations were recorded 
on day 10 and then every 3 days beginning on the 18th day. 
After the 21st day, the mice began chemotherapy treatment. 
For simplicity we did not model the effect of the treatment 
on healthy host cells and instead focused on the tumor cells. 
The new growth rate of tumor cells is then

x x = x(1−x)−a12yx−D(x,z)x−(1−e−pu(t−τ)+)x

where τ is the point in time in which the treatment begins 
to take affect and u(θ) = u0e−k eθ throttles the degree to which 
the treatment affects the tumor cell population after τ .

Using this data and least squares fitting we solved for the 
parameters g, d, and s above. Plotting our equations using the 
parameters we found resulted in Figure 5. We also plotted 
the new equation for the tumor cells after the chemotherapy 
had been applied; we see the results in Figure 6.

6 Conclusion

If the group had more time together, there are a few parts 
of our pipeline that could be improved. The detection and 
diagnosis stages would benefit from a newer, fully-digital 
dataset. These are just now becoming available, and will 
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likely push the field forward. With larger high-resolution 
data in hand, we would be able to experiment with different 
architectures, perhaps eschewing transfer learning entirely. 
The treatment model would also benefit from newer data to 
compare with our results. If human data becomes available, 
this would be ideal. Furthermore, an important aspect 
of chemotherapy is its negative effect on healthy cells, so 
incorporating this into our models would be beneficial.

Figure 5: Growth of Cells in a Mouse

Figure. 6: Decay of Tumor Cells in Mouse after Chemotherapy

STATISTICAL CONSULTING AND 
COLLABORATION SERVICES (SCCS)  

 
 

 
Statistics is integral to the research work of nearly every 
scientific discipline...Historically, our department offered 
statistical consulting services to support other researchers.  
By 2003, administrative issues resulted in the end to these 
services.  But in 2011, then-Head Michael Lavine revived 
statistical consulting in the Department as the new SCCS.  
Being a capable and curious statistician, although lacking 
external funding, he found many projects – both pro bono 
and fee-based – through our SCCS website and by word-
of-mouth, and executed them either on his own or in 
collaboration with a small number of graduate students. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By the summer of 2016, Professor Krista Gile joined the 
leadership of the SCCS in the interest of broadening the 
participation of students and increasing the volume of 
projects that could be supported.  In the 2016-2017 academic 
year, Gile also offered a 1-credit graduate course on Statistical 
Consulting.  Since then, Professors Gile and Lavine, along 
with over two dozen student consultants, have assisted with 
at least two dozen projects, whose clients include UMass 
student groups, UMass faculty and graduate students, as well 
as researchers and professionals outside the university.  These 
diverse clients include researchers interested in reducing 
the epidemic of prescription opioid use, understanding 
mathematical patterns in music, and studying the 
relationship between exercise and academic performance.    
In addition to supporting the work of these clients, the 
SCCS gives graduate (and a few undergraduate) students an 
opportunity to experience the wide variety of applications of 
statistics.  Seeing real data, while working on a project that a 
client cares about and communicating with that client, offers 
our students great practical training for the data science 
careers of the future.

 

Graduate Student Consultants Lin Cong, Janelle Fredericks,  
and Jon Moyer lending (and building) their expertise.

 
 

Unparalelled mathematician 
Maryam Mirzakhani, former 
Professor at Stanford University, 
succumbed to breast cancer 
in July 2017. Mirzakhani was 
the first woman to receive the 
Fields Medal in mathematics, 
earn ing the pres t ig ious 
award for her contributions 
in the fields of Teichmüller 
d y n a m i c s ,  h y p e r b o l i c 
geometry, and ergodic theory. 

Mirzakhani photo credit: Stanford University


