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Abstract

In a 1980 paper, Lovász generalized Sperner’s lemma for matroids. He
claimed that a triangulation of a d-simplex labeled with elements of a matroid
M must contain at least one “basis simplex”. We present a counterexample
to Lovász’s claim when the matroid contains loops and provide a necessary
condition such that Lovász’s generalization holds. Furthermore, we show that
under some conditions on the matroids, there is an improved lower bound on
the number of basis simplices. We present further work to sharpen this lower
bound by looking at M ’s lattice of flats and by proving that there exists a group
action on the simplex labeled by M with Sn.

1 Introduction

Sperner’s lemma is a claim about the triangulations of simplices, which is noted for its
equivalence to the Brouwer Fixed Point theorem. It states that given a triangulation T
of a d-simplex S and a Sperner labeling on T , there must exist at least one fully labeled
Sperner simplex. In [1], Lovász extends Sperner’s lemma for matroids, a construct
that generalizes the concept of linear independence. His extension states the following:

Theorem 1.1 (Lovász, 1980). Let S be a d-simplex, K a simplicial subdivision of
S and assume that a matroid of rank d + 1 is defined on the vertices of K. Assume
furthermore that the vertex-set V (S) of S is independent in the matroid and that for
each A ⊆ V (S), those vertices of K on the face spanned by A are contained in the
flat of the matroid spanned by A. Then K has a simplex whose vertices form a basis.
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This theorem asserts that there must exist at least one basis simplex. We found
counterexamples to this theorem when the matroids contain loops, i.e., singleton de-
pendent sets. We show that if we add to the hypothesis of Lovász’s theorem the
condition that the matroid used in the labeling is loopless, then the conclusion of the
theorem holds.

In addition to understanding Lovasz’s result, the main motivation of our project
is to improve the lower bound on the number of basis simplices that we can guarantee
in a matroid-labeled triangulation. That is, under what conditions on the matroids
can we assure the existence of more than one basis simplex.

We give the necessary background on Sperner’s lemma and matroids in Section
2. In Section 3, we formalize our corrections to Lovász’s paper and provide an im-
proved lower bound for the one dimensional case. Additionally, we provide different
approaches to solve this problem in higher dimensions. Section 4 of this paper returns
to Lovász’s constructions and highlights a group action on the vertices of a triangu-
lation labeled by a matroid. Finally, Section 5 is dedicated to remarks, conjectures,
and future work.

2 Background

At the heart of our question is Sperner’s lemma and a number of constructs from
matroid theory. In this section we will define and discuss the necessary notions.
Furthermore, we introduce Lovász’s results that bridges these concepts, provide a
correction to his paper, and prove this new claim.
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2.1 Sperner’s Lemma

Figure 1: A Sperner labeling on a 2-simplex

We start our introduction of Sperner’s lemma with a motivating example. Consider
the example shown in Figure 1. For this triangulation, we start by labeling the three
main vertices of the triangle distinctly by 1, 2, 3. Then, for any vertices on an edge of
the main triangle we impose the label of one of the vertices at the endpoints of the
edge. For example, on the edge labeled by 1, 2 in the main triangle we have the two
vertices in between labeled arbitrarily by either 1 or 2. The vertex in between the
edge labeled by 2 and 3 on the main triangle is labeled by 3 and the vertex on the
edge 1, 3 is labeled by 3; although 1 is a valid labeling. Any vertex inside the main
triangle can be labeled by any element in {1, 2, 3}.

This type of labeling is what is known as a Sperner labeling for a 2-simplex. What
Sperner’s lemma asserts is that we have an odd number of fully labeled simplices and
that there exists at least one. Fully labeled triangles are triangles labeled distinctly
by elements in {1, 2, . . . , d+ 1} for a d-simplex; in this case, a triangle labeled by 1, 2
and 3. Going back to Figure 1, the shaded simplex is the only fully labeled Sperner
simplex in this triangulation.

In general, a Sperner labeling on a d-dimensional simplex S with a triangulation
T is a labeling that satisfies the following rules:

• The vertices of the main simplex S are distinctly labeled by all the elements in
{1, 2, . . . , d+ 1}.

• The vertices located on any k-dimensional face {a1, a2, . . . , ak+1} of the main
simplex are labeled by any element in {a1, a2, . . . , ak+1}.
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Then, Sperner’s lemma states the following:

Lemma 2.1 (Sperner’s Lemma). Any Sperner-labeled triangulation of a d-simplex
must contain an odd number of fully labeled elementary d-simplices. In particular,
there is at least one.

2.2 Matroid Theory

Matroids are mathematical objects that capture the notion of linear independence in
vector spaces. We follow Oxley’s [2] definition and notations for our introduction to
matroids.

Definition 2.2. A matroid is a pair M = (E, I) consisting of a finite set E called the
ground set and a collection of subsets I from E that satisfy the following conditions:

• ∅ ∈ I

• If I ∈ I and I ′ ⊆ I, then I ′ ∈ I

• If I1 and I2 are in I, and |I1| < |I2| then there is an element e ∈ I2 − I1 such
that I1 ∪ e ∈ I.

It is useful to consider some examples. In the first example below, we have a
matroid of vectors in R2 where the independent sets are sets of linearly independent
vectors. The second example involves a graphic matroid, a type of matroids which we
will use in further examples throughout the paper.

Example 1. Consider the following matrix whose columns are vectors in R2:

( e1 e2 e3 e4 e5
1 0 0 1 1
0 1 0 0 1

)
.

Let E = {e1, . . . , e5} denote the set consisting of the five column vectors of the
above matrix and let I denote the collection of all subsets of E which forms linearly
independent sets of the vectors in R2.

Then, it is not hard to see that M = (E, I) is a matroid. The empty set of
vectors is defined to be linearly independent, so ∅ is in I. For I ∈ I, a set of linearly
independent vectors, then any subset I ′ ⊆ I is also a linearly independent set of
vectors, so I ′ must be an element of I as well. We leave it to the reader to verify that
the third condition in Definition 2.2 also holds for M .

Example 2. Consider the graph in Figure 2 below. Let E denote the set of edges
in the graph and let I denote the collection of all sets of edges that do not form a
cycle. That is, a set I ⊆ E of edges is an independent set if it does not form a cycle.
Otherwise, if X ⊆ E forms a cycle, we say that it is a dependent set.
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Figure 2: Example of a graphic matroid.

We claim that M = (E, I) is a matroid. The empty set of vectors does not form
a cycle, so ∅ is in I. If I is a set of edges that do not form a cycle, then any subset
I ′ ⊆ I must not form a cycle, which means that I ′ ∈ I. Again, we leave it to the
reader to verify that the third condition also holds for M , thereby showing that M
is a matroid. Such a matroid, whose ground set is the set of edges in a given graph
and whose independent sets are the sets of edges with no cycles, is called a graphic
matroid.

A minimal dependent set in an arbitrary matroid M will be called a circuit of M
and we shall denote the set of circuits of M by C. If a two-element set {m1,m2} form
a circuit in M , then m1 and m2 are parallel in M . The parallel class of an element
m ∈ E is then the set of all elements in E that are parallel to m.

We know from linear algebra that any set of n linearly independent vectors in Rn

will span all of Rn and we call this set a basis of Rn. Another useful concept is the
rank of a set of vectors. We know that any basis in Rn will be of rank n, we also know
that adding any other vector to a basis will make the set dependent but the rank will
remain the same. This suggests a generalization of basis and rank for matroids:

• A basis of a matroid M = (E, I) is a maximal independent set of E.

• The rank r(M) of a matroid M is the size of a basis in M . Then, the rank of
a subset X ⊆ E is the size of the largest independent set in X.

Formally, let M = (E, I) be a matroid, suppose that X ⊆ E and that I|X =
{I ⊆ X : I ∈ I}. We define the rank r(X) of X to be the size of a basis B of M |X.
That is, a function r : 2E → Z+ ∪ 0 is the rank function of a matroid on E if and
only if r satisfies the following conditions:

• If X ⊆ E, then 0 ≤ r(X) ≤ |X|.

• If X ⊆ Y ⊆ E, then r(X) ≤ r(Y ).

• If X and Y are subsets of E, then r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).
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Two concepts of utmost importance in our paper are the ideas of closures and
flats. Let cl be the function from 2E into 2E defined for all subsets X ⊆ E by

cl(X) = {x ∈ E : r(X ∪ x) = r(X)}.

This function is called the closure operator of M . A set X ⊆ E is called flat if
X = cl(X). Throughout this paper we will denote the flat of any set X ⊆ E as 〈X〉.

2.3 Matroid and Induced Sperner’s Labelings

In his paper, Lovász described a method of labeling a triangulation by elements
of a matroid in a way that emulates Sperner labeling. In the case of a triangle’s
triangulation, we label the main vertices of said triangle with the elements of a basis
of a rank 3 matroid. Then we use the flats of the basis elements labeling the main
triangle to label vertices on the edges they define. Finally we label internal vertices
with any remaining elements. We see this in Figure 3.

Figure 3: A matroid and its labeling on a triangulation.

In general, a labeling of this kind is defined as follows:

Definition 2.3. Let S be a d-simplex and T a triangulation of S. Assume that there
exists a matroid of rank d + 1 defined on the vertices of T . We define a matroid
labeling on T as a labeling on the vertices of T that satisfy the following conditions:

• The vertex-set V (S) of S forms a basis in the matroid.

• For each A ⊆ V (S), the vertices of T that are in the face spanned by A are
contained in the flat of the matroid spanned by A.

Any simplex in the triangulation whose vertices are labeled by a basis is a basis
simplex. It is important to note that for an arbitrary matroid and triangulation there
is not necessarily a proper matroid labeling. It is vital that the triangulation have
the same number of vertices as the matroid has elements and that the flats of the
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elements labeling the main edges have enough elements to label the vertices on those
edges.

Due to its similarity to Sperner labeling, matroid labeling can be converted to
Sperner labeling with relative ease. We simply look at the flats of the basis elements
labeling the main vertices of our simplex and impose a labeling from this. A Sperner
labeling brought on from a matroid labeling is said to be induced by it.

Definition 2.4. Suppose S is a d-dimensional simplex and T corresponds to a trian-
gulation of S. Let M = (E, I) be a rank (d+ 1)-matroid with basis {a1, ..., ad+1} and
Fi = 〈a1, . . . ai〉 − 〈a1 . . . ai−1〉 for all i ∈ [d+ 1]. A Sperner labeling on T induced by
a matroid M is a labeling that satisfies the following properties:

• There is a matroid labeling on T .

• For all v ∈ T , v is labeled by some i corresponding to the flat Fi of v.

To highlight this process we shall look at the matroid and 2−simplex from earlier.
Consider Figure 4.

Figure 4: A matroid, its labeling on a triangulation, and its induced Sperner labeling.

Notice the vertices corresponding to the elements in the flat of e1 are labeled with
1 in the induced Sperner labeling—namely e1 and e2. Then the vertices with the
unlabeled elements in the flat of e1 and e4 are labeled with 2—namely e3, e4, and
e8. Lastly all of the remaining vertices are labeled with 3’s in the induced Sperner
labeling.

3 Results

3.1 Correction to Lovász’s Results

The motivation for this paper is a result published by Lovász [1] in which he asserts
the following:

7



Let K be a simplicial complex which is a d-dimensional manifold. Also assume
that a matroid of rank d+ 1 is defined on the set of vertices of K. If K has a simplex
whose vertices form a basis of the matroid, then it has at least two.

In the proof, Lovász uses the following procedure:

Assume that (a1, . . . , ad+1) is the unique simplex which is a basis. Let Fi, denote
the flat spanned by {a1, . . . , ai}. Let Q denote the set of all sequences (x1, . . . , xd) of
elements of the matroid such that

x1 ∈ F1, xi ∈ Fi − Fi−1 (1)

Then, Lovász claims the set {x1, . . . , xd} is automatically independent in the ma-
troid. But this is not necessarily the case.

Figure 5: Lovász claims that any matroid labeling must have at least one basis
simplex. Loops, which are dependent on their own, make this untrue.

Consider figure 5, in this figure the edge e4 is a loop and is therefore dependent to
itself and every other element in the matroid. Which means that in the construction
in 1 every set in Q will contain a loop and will therefore be dependent. This contra-
dicts the claim and suggests that we make the following addendum to the statement:

Theorem 3.1. Let K be a simplicial complex which is a d-dimensional manifold. Also
assume that a loopless matroid of rank d + 1 is defined on the set of vertices of K.
If K has a simplex whose vertices form a basis of the matroid, then it has at least two.

We added the condition that our choices of matroids are loopless matroids. Loop-
less matroids are matroids that do not contain dependent singletons in the ground
set. By restricting our choice of matroids to loopless matroids, we can be certain that
the construction in 1 will yield a set Q of independent subsets of E.

Next we state the corollary presented in [1]:
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Let S be a d-simplex, K a simplicial subdivision of S and assume that a matroid
of rank d+ 1 is defined on the vertices of K. Assume furthermore that the vertex-set
V (S) of S is independent in the matroid and that for each A ⊆ V (S), those vertices
of K on the face spanned by A are contained in the flat of the matroid spanned by A.
Then K has a simplex whose vertices form a basis.

The triangulation in figure 5 satisfies the conditions mentioned in the foregoing
corollary but leads to an erroneous conclusion. There is no basis simplex in the tri-
angulation and this is due to the fact that there is a loop in the matroid. If we then
restrict our choices to loopless matroids we can prove the corollary holds.

Corollary 3.2. Let S be a d-simplex, K a simplicial subdivision of S and assume
that a loopless matroid of rank d + 1 is defined on the vertices of K. Assume
furthermore that the vertex-set V (S) of S is independent in the matroid and that for
each A ⊆ V (S), those vertices of K on the face spanned by A are contained in the
flat of the matroid spanned by A. Then K has a simplex whose vertices form a basis.

To prove this corollary we first prove the following lemma:

Lemma 3.3. Let S be a d-simplex, T a triangulation of S and P(T ) the Sperner
labeling induced by a matroid M = (E, I) of rank d+ 1 defined on the vertices of T .
If {v1, v2, . . . , vd+1} are the vertices of a fully labeled Sperner simplex on P(T ) then
{v1, v2, . . . , vd+1} corresponds to a basis {b1, b2, . . . , bd+1} on M .

Proof. Suppose {v1, v2, . . . , vd+1} are vertices that form a fully labeled Sperner sim-
plex on P(T ). Let Fi denote the flat that indexes the vertex wi ∈ T and let P(bi)
denote the element in E that is labeled by vi ∈ {v1, v2, . . . , vd+1}. Then vi is labeled
by an element bi such that bi ∈ Fi− (Fi−1 ∪Fi−2 ∪ . . .∪F1), that is, bi is independent
to any element in Fi−1, Fi−2, . . . , F1. Since each element in {v1, v2, . . . , vd+1} is labeled
differently, then bi is independent to any bk such that P(bk) = vk ∈ {v1, v2, . . . , vd+1}.
This implies that the set {b1, b2, . . . , bd+1} is an independent set of size d+ 1. There-
fore, the set {v1, v2, . . . , vd+1} corresponds to a basis {b1, b2, . . . , bd+1} in M .

Proof of Corollary 3.2. By lemma 3.3 and Sperner’s lemma, the corollary follows.

3.2 Lower Bound on Basis Simplices

By virtue of the conditions on labeling a triangulated simplex with a matroid, certain
elements are limited on what vertices they can label. Due to this and their relative
independence from the ordered basis we can see that certain matroids demand a
minimum number of basis simplices. We will first explore this in the one dimensional
case.
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Figure 6: One dimensional example of a matroid labeling.

Consider the matroid and its corresponding triangulated 1−simplex in Figure 6.
By construction, the vertex labeled by the element e3 can be swapped with the label of
any other internal vertex on the 1−simplex. It is easy to check that e3 is dependent
to both e1 and e2 but independent to either of those elements (and their parallel
elements) individually. Therefore e3 forms a basis with any element in the parallel
classes of e1 or e2. Additionally, any element in the parallel class of e1 will form a
basis with any element in the parallel class of e2 and vice versa. Thus, regardless of
how we scramble the labels of the internal vertices on this 1−simplex there will be at
least two basis simplices. We will now generalize this example.

Theorem 3.4. Let M be a matroid of rank 2 that has a circuit of size 3 and let S
be a 1-simplex. Then, for any triangulation T of S that is labeled by M there are at
least two basis simplices.

Proof. Without loss of generality we shall refer to elements in the parallel classes of
the basis elements that label the main vertices of T as P1 and P2 and to P3 as any
element that forms a circuit of size 3 with elements of P1 and P2. We now have four
cases: either an element of P3 has a fellow P3 element and either a P1 or P2 element
adjacent to it, that element has only P3 elements adjacent to it, both an element in
P1 and P2 are adjacent to it, or that element has only elements from P1 or P2 adjacent
to it. In the first two cases we simply note that when an element of P3 has a fellow P3

element adjacent to it that adjacent element must fall within the cases as well. Our
triangulation is finite, so it follows that either a P1 or P2 element must eventually be
adjacent to one of these adjacent P3 elements. As such, we can treat these chains of
P3 elements as if they were a single element and we fall into the remaining two cases.

Case 1: Suppose the element(s) in P3 are surrounded on both sides by elements
in P1 and P2. As mentioned, said element(s) form a basis with both the elements in
P1 and P2. Thus there are at least two basis simplices.

Case 2: By a nearly identical argument, suppose the element(s) in P3 are sur-
rounded on both sides by elements in either P1 or P2. Regardless of which parallel
class they are adjacent to, elements in P3 form a basis with elements in either P1 or
P2. Therefore there are at least two basis simplices again.

Should a matroid of rank 2 without a circuit of size 3 be used in labeling a
triangulation it simply falls into a case of Sperner’s lemma for 1−simplices.
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When moving to higher dimensional simplices we need to be weary of overwhelm-
ingly large parallel classes that “smother” our triangulation. To see what this means
consider Figure 7.

Figure 7: A matroid with a large parallel class and a “smothered” triangulation.

The huge parallel class of e3 allows us to surround elements that would otherwise
form multiple basis simplices and limit the amount of basis triangles that appear.
While dealing with general matroids we have to worry about having parallel classes
that run rampant.

4 Further Results

4.1 Lattice of Flats

As it was shown in the previous section, the Sperner labeling induced by a matroid
M depends on the order of the basis we are fixing. This suggests that there should
be an action of the symmetric group on the elements of the basis, and so, an action
on the Sperner labeling. To show this, we need an auxiliary structure from algebraic
combinatorics:

Definition 4.1. A poset P is a finite set, also denoted P , together with a binary
relation denoted ≤ satisfying the following axioms:

• (reflexivity) x ≤ x for all x ∈ P .
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• (antisymmetry) If x ≤ y and y ≤ x, then x = y.

• (transitivity) If x ≤ y and y ≤ z, then x ≤ z.

For our purpose we will be interested in a particular poset:

Definition 4.2. Let n ∈ N and E = {1, 2, ..., n} be a set. We call Bn = (P(E),⊂)
the boolean algebra of n elements, where 2E denotes the power set of E.

Figure 8: B3.

In Figure 8 we have what is called the Hasse-diagram of B3. Now let Sn be the
symmetric group on n elements. For any σ ∈ Sn and A = {i1, ..., im} ∈ Bn we
define σA = {σ(i1), ...σ(im)} where m ≤ n. It’s easy to check that this is indeed
an action of Sn on Bn. From now on we are going to drop the brackets and com-
mas when we talk about elements of Bn, for example: {1, 2, 3} will be denoted by 123.

A lattice is a poset L such that, for every pair of elements, the least upper bound
and the greatest lower bound of the pair exists. Formally, if x and y are arbitrary
elements of L, then L contains elements x ∨ y and x ∧ y, the join and meet of x and
y respectively, such that:

• x ∨ y ≥ x, x ∨ y ≥ y, and if z ≥ y, then z ≥ x ∨ y; and

• x ∧ y ≤ x, x ∧ y ≤ y, and if z ≤ y, then z ≤ x ∧ y.

In the case of B3 the operations join and meet are union and intersection, respectively.
It is easy to see from the Hasse-diagram that B3 is in fact a lattice.

If M is a matroid, let L(M) denote the sets of flats of M ordered by inclusion.
It’s easy to see that this is a partially ordered set. Additionally it can be endowed
with the structure of a lattice, as stated by the following theorem.

Theorem 4.3. L(M) is a lattice and, for all flats X and Y of M ,

X ∧ Y = X ∩ Y and X ∨ Y = cl(X ∪ Y ).
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4.2 Group Action

A Sperner labeling induced by a matroid labeling as described in section 2.3, is fully
reliant on the order in which we consider the chosen basis. By simply changing the
order of the basis we induce vastly differing Sperner labels with varying fully labeled
elementary simplices. By the lemma presented in section 4.2.2, this means that
the Sperner triangles may correspond to different basis simplices altogether. We will
show that there exists a group action on the induced Sperner labelings as we permute
the order of the basis elements.

4.2.1 S3 as a Group Action

Our goal for this section is to extend the action defined in section 4.1 to an action
on the Sperner labeling by permuting the order of the basis, first we do it for a given
example and then generalize in the next subsection. Let M be the matroid depicted
in Figure 9 and choose B = {e1, e4, e7}, an ordered basis of M . Notice that in L(M),
Figure 10, restricting ourselves to the flats that include 〈e1〉, 〈e4〉, or 〈e7〉 gives a
sublattice PB that looks as a boolean algebra (Figure 11). This suggests that there
is an isomorphism between PB and B3, and since the basis B was ordered, the most
natural isomorphism φ would be to send 〈e1〉 to 1, 〈e4〉 to 2, and so on.

Figure 9: The matroid M .
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Figure 10: The lattice L(M) corresponding to M in Figure 9.

Figure 11: Restriction of L(M) to PB.

Now suppose that we have a triangulation T on a triangle that is matroid-labeled
by a matroid M (Figure 12). We are now going to show a different way to construct
the induced Sperner labeling from B. First, take the path in PB whose vertices are
the flats for the induced Sperner labeling and label each of them by 1, 2 and 3 in order
of appearance from bottom to top(Figure 13). For any other nonempty element X
in PB, we label it so that it has the same label of the first element on the path that
contains it. If we label each x ∈ M with the label of the first set that contains x we
will get an Sperner labeling on T .
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Figure 12: A triangle triangulated and matroid-labeled by M .

Figure 13: Sperner labeling in terms of PB.

A natural question arises; for any order of the basis, can its respective induced
Sperner labeling be constructed like this? It is indeed the case and we will give an
example in Figure 14 that shows the induced Sperner labeling for the basis B′ =
{e4, e7, e1}. This can be viewed as the basis B permuted by (132).
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Figure 14: Sperner labeling for basis B′.

Notice that the given Sperner labeling induced by B can be assigned to the boolean
algebra B3 through the isomorphism φ. Now, if we let R be the set of pairs (A, b)
where A 6= ∅ ∈ B3 and b is the respective Sperner labeling of A, we can extend the
action of S3 on B3 to R by letting σ(A, b) = (σ(A), c) where σ ∈ S3 and c is the
respective Sperner labeling of σ(A). Notice that this is well defined because every
element of B3 is paired uniquely to one of the elements of {1, 2, 3}. In Figure 15, we
show all the different pairs that live in R.

Figure 15: R.

So far the action acts in some auxiliary set and it is not so clear how permut-
ing objects in the basis will relate to those tuples in R. Since PB is isomorphic to
B3 we can think of each flat of PB as an element of B3, and since every element
in the matroid appears in some element of the lattice PB we can “label” each ele-
ment of M with the tuple in R corresponding to the first “flat” in B3 that contains it.

As an example consider e3 ∈ M , its label would be (12, 2) since the first flat that
contains e3 is {e1, e2, e3, e4, e8} which corresponds to 12 in the isomorphism. And, if
we were going to change the order of the basis by permuting it with (132), the new
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labeling of e3 would be (132)(12, 2) = (13, 3) since (123)({1, 2}) = {1, 3} and 13 is
paired with 3. Although the action is defined on the labelings of the elements of M
it is really an action on the elements of the basis B, since the elements of B are those
who are labeled by tuples of the form (i, i) with i ∈ {1, 2, 3}. To see that the action
indeed corresponds to changing the order of the basis and then finding the induced
Sperner labeling the reader should note that the action is permuting maximal paths
on the boolean algebra. As an example of how the action would look in a triangulation
we give Figure 16.

Figure 16: Example of a triangulation labeled by M , the induced Sperner labeling
and by permuting the elements of the basis by (132).

4.2.2 Sn as a Group Action

We will now generalize this concept to any dimension. Let M be a matroid on the
vertices of a (d − 1)-simplex T such that M induces a matroid labeling. Let the or-
dered basis corresponding to the main vertices of T be B = {b1, ..., bd}. For Hi = 〈bi〉
with i ∈ [d], we denote PB as the poset generated by the Hi under the ∨ and ∧
operations. We call PB the boolean algebra induced by B.

A map f such that f(Hi) = {i} easily constructs a poset Bd. An isomorphism
between the posets PB and Bd follows trivially.

The reader should note that inducing a Sperner labeling from B′, an ordered basis
using the elements of B, is equivalent to:

• Taking a “maximal” path1, w = w1...wd+1, in PB and —beginning at level 1
then moving up —labeling f(wi) and its unlabeled subsets in Bd as i.

• Label each element x of M with the label of f(A), where A is the smallest set
in PB that contains x.

1We mean maximal without the empty set.
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Note that by the previous method each element of Bd is uniquely represented by a
Sperner label. Hence, every Sperner labeling induced by B′ is uniquely determined
by a path in PB (we are taking the path so that we may label). Moreover, when we
take B′ = B, because our construction of the isomorphism depends on the order the
basis, the path that corresponds to B is the leftmost path in Bd.

When fixing an ordered basis B, define RB as the set of tuples (A, l(A)) where
A ∈ Bd and l(A) is the unique Sperner label attached to A as described above. Given
σ ∈ Sd, the action on Bd induces an action on RB where σ(A, l(A)) = (σ(A), l(σ(A)).
Here l(σ(A)) represents the Sperner label that accompanies σ(A). Formally stated
we have the following:

Theorem 4.4. Suppose T is a triangulation of a (d−1)-simplex that is matroid-labeled
by M and let PB be the boolean algebra induced by B, the ordered basis labeling the
main vertices of T . The action on RB corresponds to an action on the basis B and,
therefore, an action in the uniquely determined induced Sperner labelings.

Proof. To show that the action described before is in fact an action on the induced
Sperner labelings we need to show two things:

• That the action on RB is in fact an action.

• The action permutes paths in PB while permuting the elements on the basis.

First we will show that the action is indeed an action: Suppose that A ∈ Bd and
l(A) is the Sperner label such that (A, l(A)) ∈ RB. It follows that for the identity,
e ∈ Sd, e(A, l(A)) = (e(A), l(e(A))) = (A, l(A)). Furthermore, if σ, τ ∈ Sd we have
that:

σ(τ(A, l(A))) = σ(τ(A), l(τ(A))) = (στ(A), l(στ(A))).

Then it follows that Sd acts on RB.

Now we will show that the action permutes paths in PB while permuting the order
of the basis. First, label each element x ∈M by (A, l(A)) ∈ RB, where A = f(X) and
X is the smallest set in PB that contains x. We want to show that for a given σ ∈ Sd
the induced Sperner labeling by B′, the basis B reordered with σ, will correspond to
the one of σRB.

Let x ∈ M and X be the flat such that X is the minimum element in PB that
contains x. By construction, x is labeled by (f(X), i) ∈ Rb for some i so that
f(X) ⊆ {1, ..., i}. We know by definition of the action that σ(f(X), i) = (σf(X),m)
where m = max

i∈f(X)
σ(i). Moreover we know that:

σf(X) ⊂ {σ(1), . . . , σ(i)} ⊂ {1, . . . ,m}.
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So, when we apply σ−1 to the sequence of sets we will have that

f(X) ⊂ {1, . . . , i} ⊂ {σ−1(1), . . . , σ−1(m)}

because σ is an automorphism of Bd. Moreover, by using the fact that f is an
isomorphism we have that:

X ⊂ 〈b1, . . . , bi〉 ⊂ 〈bσ−1(1), . . . , bσ−1(m)〉.

Notice that bσ−1(i) is the element of the basis B that is in the “ith” position in B′.
Now by the discussion before the theorem, we know that inducing a Sperner labeling
by B′ depends uniquely on a path w = w1....wd+1 where wi = 〈b′1, ..., b′i〉 and b′j is the
element of B′ in the position j. Therefore by definition: wm = 〈bσ−1(1), ..., bσ−1(m)〉.
By construction of 〈bσ−1(1), ..., bσ−1(m)〉 we know that wm is the smallest element of the
path that contains x. Thus, x is labeled by m in the induced Sperner labeling. We
conclude that both the induced Sperner labeling and the labeling from RB coincide.
Hence the action on RB is an action on the induced Sperner labelings.

With this group action we can now revisit the concepts from Section 2 in a new
light. Specifically we will revisit the lemma we used to prove Lovász’s corollary.

Lemma 4.5. Suppose σ ∈ Sd. Let S be a d− 1-simplex, T a triangulation on S, and
P(T ) the Sperner labeling induced by a matroid M = (E, I) of rank d defined on the
vertices of T as previously described. Let σ(P(T )) be the Sperner labeling induced by
applying σ to the poset of the ordered basis on the main vertices of T . If there is a
fully labeled Sperner triangle in σ(P(T )) then its vertices correspond to a basis in M .

Proof. This follows by construction. Suppose the ordered basis that that induced
P(T ) isB = {b1, ..., bd}. It follows that σ(P(T )) has the ordered basisB = {bσ−1(1), . . . , bσ−1(d)}
and that if a vertex, x, is labeled by i then x ∈ Fσ−1(i) − (Fσ−1(i−1) ∪ ... ∪ Fσ−1(1)).
As such x must be independent to any element in Fσ−1(i−1) ∪ ... ∪ Fσ−1(1) and has
a different Sperner label than any of them. Clearly any fully labeled triangle must
correspond to d independent elements. Thus, by the equicardinality of basis, a fully
labeled triangle must correspond to a basis in M .

5 Conclusion

Finding a lower bound on the number of basis simplices is heavily reliant on the
triangulation being labeled and on the matroid being used to label it. We are currently
working to find the necessary conditions for smothering. We believe the following to
be true.

Conjecture 5.1. Let M be a matroid such that there exists a parallel class with
r(M) + 1 elements. Also suppose S is an (r(M) − 1)−simplex. Then there exists a
triangulation T of S and a matroid labeling of M on T such that there is only 1 basis
simplex.
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If we manage to prove this, we would know that finding a lowerbound different
from 1 is impossible for certain matroids. With the knowledge of what matroids will
not cause smothering, we can proceed with our main concern of finding a sharpened
lower bound. We have some conjectures as to how this can be accomplished by look-
ing at the lattice of flats.

If an improved lower bound is found for general d-simplices, we believe this prob-
lem can be generalized further to a version analogous to Sperner’s lemma for poly-
topes.
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